
INIT-Scope 2.0
by

David P. Sumner

INIT-Scope 2.0 is Shareware
If you decide to keep it send

$15 to
David Sumner

1009 Walters Lane
Columbia, SC 29209

1

2

INIT-Scope 2.0

Introduction
INIT-Scope is a cdev/INIT combo that meshes with the startup mechanism at the
lowest levels of your Macintosh. The INIT portion of INIT-Scope monitors the
entire loading process, and provides a great deal of information concerning what
happens to your computer during this critical phase. The cdev portion allows you
to choose among several options, and also provides some useful utilities.

What Good is It?
INIT-Scope will provide you with a highly detailed report of the startup activities
of your Macintosh. If you are experiencing any mysterious problems with your
computer,
INIT-Scope may provide the essential clues that you need to understand what is
happening. Moreover, if you are an INIT-Developer, you will find INIT-Scope of
great value in debugging your INIT.

 Maybe you are just curious as to what all those INITs are doing to your
computer, or you want to know how they work; INIT-Scope is just the tool to
provide the information you need.

INIT-Scope tells you:
1. What the environment of your computer is like at startup.
2. Which traps are patched by each INIT.
3. Which low-memory global variables are changed by each INIT.
4. What resources are loaded in by each INIT (and the order in which they were
loaded).
5. A Trap History1 of each INIT. This includes the parameters for many of the traps.

…and MUCH more.
And INIT-Scope does this without patching any traps itself!

Installing INIT-Scope
System 6
If you are using system 6.x, then simply place INIT-Scope into the system folder
on your startup hard drive.

1Virtual Memory must be off to get the trap history portion of the report.
3

System 7
In system 7.0 lingo, INIT-Scope is an extension/cdev combination. To work
properly, you must place INIT-Scope into the Extensions folder, and place an alias
of INIT-Scope into the Control Panels folder. If you simply drag INIT-Scope into
the system folder, the Macintosh will ask you if you want to place it into the
Control Panels folder. When this happens, just say, “No.” It is important that you
place the alias into the Control Panels folder, and INIT-Scope itself into the
Extensions folder.

Once installed, you can adjust the operation of INIT-Scope by opening it up as a
control panel. The possible options are described later in this document.

4

Using INIT-Scope

Who Can Use INIT-Scope?
Basically, INIT-Scope is a technical tool, and is of maximum use to a skilled
programmer. However, it is of considerable value to others as well.

1. Even if you do not understand everything in the Startup Report that INIT-Scope
produces, you will most likely still be able to get a fairly good idea of what your
INITs (or extensions) are doing to your system.

2. You can use INIT-Scope's INIT skipping feature to skip loading particular INITs
at startup time.

3. By providing a technical person with the data provided in INIT-Scope's Startup
Report, (s)he may be able help you figure out any kinds of problems that you
might have.

Using INIT-Scope
INIT-Scope is easy to use. Just install it into your system folder as described
previously, open up the control panel, and choose the options you want. Then
reboot your computer. The rest is automatic.

Note: If you are using Virtual Memory, you will find that most of the information
in the startup log is missing. If you want to get a full report from INIT-Scope,
power-up with Virtual Memory turned off. There is no problem with 32-bit
memory settings.

What's in a Name?
Note that INIT-Scope's name has a leading space character. This is done so that it
will load earlier than (most) of the other INITs in your system folder.
INITs/cdevs/RDEVs load in alphabetical order. Thus you may rename INIT-Scope
by placing a different leading character if you want to change its position in the
startup process. If you redistribute
INIT-Scope to a bulletin board or other source, please leave its name as ‘ INIT-
Scope’ with a leading space (also be sure to include this documentation.)

Skipping INITs
If you check the 'Skip INITs on Shift Key' option in the INIT-Scope cdev, then you

5

can skip any INIT in your system folder by simply depressing the Shift key2 (but no
other modifier keys) just before it loads in. Generally, this amounts to depressing the Shift key right after the icon of the previous
INIT appears. When INIT-Scope detects the Shift key it will abort the loading of the next INIT, emit a short beep as a signal, and
delay for two seconds to give you time to release the Shift key. Of course, to use this feature you must know the order in which
your INITs load.

 If you are having a system bomb at some point during the startup process, it might be a good idea to use this feature to simply
skip all the INITs in your system folder—a lot easier than booting with a system disk on an external floppy diskette.

2Note that if you hold down the Shift Key at the beginning of the start-up of a machine running system 7, then all INITs will be
disabled.

6

 One reminder—some INIT or cdev files may contain several distinct INITs. For example Easy Access has three. Thus to
completely bypass Easy Access in this manner would require leaving the Shift key down for all three INITs.

Turning Off INIT-Scope
Although it provides you with a great deal of information, you do not generally
need to keep INIT-Scope turned on (unless maybe you want to use one of the 'Skip
INITs' or 'Intercept INITs' feature).

 You can turn INIT-Scope off from the control panel. After this, INIT-Scope will
not execute again until you turn it back on.

When INIT-Scope intends to load and execute, it displays the icon .

If INIT-Scope is resident, but does not execute, it will display the icon

instead.
 If INIT-Scope is turned on in the cdev, but you would like to bypass it in the
startup process, just press down the Shift Key as INIT-Scope is about to load.

The Startup Report3
INIT-Scope produces a text file report called Startup Report.
You will find this file on the root level of your startup disk. This
report contains the following information:

1. The names and trapwords of all traps patched and the address
of the patches.

2. The basic information about your system—such as type of
computer, keyboard, amount of RAM, and the values of
important low memory locations.

3. Information about the resources used by the various INITs
during the startup process. This includes each resource type,
ID and handle.

3The report is best read using size 12 Times as the Normal font.
7

4. Addresses of all VBL routines. This includes the address of
VBL routines loaded prior to the execution of INIT-Scope
itself. Along with the address of each VBL is the phase and
count values associated with it.

5. Addresses of all shut-down routines installed. Along with the
address of each such routine is an indication of what stage of
the shut-down procedure calls the routine.

6. Addresses of all installed time manager routines.

7. Addresses and associated strings of Notification requests.

8. The start and end of the application heap at the time each
INIT loads.

9. The system heap expansion caused by the INIT.

8

10.The actual system heap RAM used by the INIT. (This is
based upon the amount of free memory in the system heap
before the INIT executes compared with the free space
afterwards. In addition, the size of a largest free block of RAM
is provided as well.

Finally, one of INIT-Scope's finest features,

10. A detailed description of the trap history of the loading
process.

Format of the Startup Report
INIT-Scope’s output file begins with a brief header and description of the
environment of the machine in which it resides.

 After this system information, the Startup Report provides detailed information
about each extension as it is loaded and executed by the system. For each INIT, the
INIT-Scope report shows the system environment in which the INIT loads and also
the effect that the INIT has on this environment. In particular, INIT-Scope shows
the application heap at the time the INIT loads (the system heap is an immediate
derivative of this—it lies directly below the application heap). Additionally, this
portion of the report shows how many bytes of system RAM and High RAM the
INIT uses. Also the amount of RAM the INIT requests (through its 'sysz' resource)
is also noted—requests for less than 16K are treated by the system as requests for
16K). Note that the system heap need not expand in response to this request if
there is already sufficient memory available in the system heap.

 This section of the report also shows the true size of the INIT in bytes.

 Exactly what the file looks like will depend upon the options you select in the
INIT-Scope cdev in the Control Panel.

9

Note that on-line help is available by clicking on any

10

button while holding down the option key.

If you have checked the Show Resource Info box, then for each INIT you will see all the Resource Types accessed by the INIT
(either directly by the INIT or indirectly through calls made by toolbox traps that are used by the INIT). These Types will appear
in the order in which they occur in the loading process.

 Interspersed with the resource types are a number of other useful pieces of data. This includes the addresses and names of all
traps patched by each INIT, all VBL (clock interrupt) routines installed, Shutdown manager routines installed, Notification
requests, and much more.

For example, if the Show Resource Info is checked, then this portion of a Startup Report file might look like this:

>File Sharing Extension (INIT) <

Size of this INIT in bytes: 2560
BufPtr: $726E90
High Ram Used (bytes): 0
Requested System Heap space (bytes): 0
System Heap Expansion (bytes): 44968
System Heap Used (bytes): 2616
Application Heap: $F4164 - $F5964
Free in System Heap (bytes): 66752
Largest Free Block in System: 39724 Diff= 27028
INIT Handle: $61814

 Patches / Installations

 ResType STR
 ResType GBRL
 $A063 Patch: $A9732 MaxApplZone
 $A065 Patch: $A9BA0StackSpace
VBLProc installed at: $A9BE4 Count: $C Phase: $0
 $1C9 Patch: $A9716 SysError
 $A094 Patch: $A9ADC xxxx

Low Memory Globals Altered:

($3E2) FSQueueHook Changed from: $2B696 To: $A9B74
($B50) Twitcher1 Changed from: $FFFFFFFF To: $0

 This would tell you that this INIT loaded a resource of type STR , and then one of type GNRL. Then it patched
the toolbox trap MaxApplZone with a routine of its own at address $920C2 (the ‘$’ indicates a hex value). It also
patched the StackSpace trap, and then installed a VBL procedure at address $92574. It then patched the SysError
trap and the trap with trap word $A094.

 There are a great variety of other kinds of information that this portion of the Startup Report file provides. for
instance, consider this segment of the output for the INIT Soundmaster.

11

VBLProc $417C82 Count: $1 Phase: $0
Removed VBLProc: $417C82
Removed VBLProc: $792E
 $A9C8 Patch: $17B80 SysBeep
Shut Down Routine at: $17B94 Called before: Restart
Shut Down Routine at: $17B98 Called before: Power Off
Removed VBLProc: $792E
 $A017 Patch: $17B8C Eject
 $A02F Patch: $17B88 PostEvent

 Here we see that SoundMaster Installed a VBL routine and then shortly thereafter removed it. It then patched the trap SysBeep.
After this, it installed two shutdown routines; one to be called before the computer restarts, and another to be called just before
the power is turned off.

Finally, SoundMaster patched the traps Eject and PostEvent.

As one last example, here is the initial portion of the report on SndControl.

>SndControl (cdev) <

Size of this INIT in bytes: 14758
BufPtr: $6D3070
High Ram Used (bytes): 0
Requested System Heap space (bytes): 40960
System Heap Expansion (bytes): 24616
System Heap Used (bytes): 29586
Application Heap: $98778 - $99F78
Free in System Heap (bytes): 16952
Largest Free Block in System: 13744 Diff= 3208
INIT Handle: $1D7E4

 Patches / Installations

 $A00FPatch: $4A23A MountVol
 $A9C8 Patch: $4A15A SysBeep
 $A017 Patch: $4A1AE Eject
 $A00EPatch: $4A1F4 UnMountVol
 $A9F4Patch: $4A318 ExitToShell
 $A9F2Patch: $4A328 Launch
 $A9A0 Patch: $4A398 GetResource
 $A92D Patch: $4A35A CloseWindow
 $A9C9 Patch: $4A338 SysError
 $A97B Patch: $48F86 InitDialogs
Shut Down Routine at: $4A510 Called before: Power Off
Shut Down Routine at: $4A528 Called before: Restart
Shut Down Routine at: $4A540 Called before: Closing Drivers

Low Memory Globals Altered:

($29A) JGNEFilter Changed from: $36D0E To: $48DFE

 The Startup Report file can provide much more information than what we have indicated here. The sections that
follow will elaborate on this.

12

 The appendix at the end of this documentation discusses the Startup Report in much greater detail.

Patches and Hooks
Obviously, it is very useful to know which traps are patched by the various INITs
that reside in your system. If two INITs patch the same trap(s) then there is a
potential for trouble (although well-written INITs can generally patch the same
traps without stepping on each other’s toes). Moreover, this information gives you
at least a rough idea of how the INIT performs its magic.

 For instance, it should come as no great surprise that Boomerang patches the
StdFile trap. This is how it can get that little boomerang icon into the Standard File
dialog box every time. You will not be shocked to discover that the virus protection
INITs patch traps that modify resources. By patching such traps, these utilities can
intercept a virus that is trying to add or modify a system resource and refuse it
access. On the other hand, you might be surprised to discover that the INIT the
Grouch 4 (previously Oscar) patches the traps MenuSelect and CopyBits. Well, MenuSelect is pretty obvious since the
Finder’s ‘Empty Trash’ menu item is changed to ‘About the Grouch’, but why CopyBits? Well, I’m guessing because I haven’t
looked more closely at it, but probably the idea is based around the fact that when you throw something into the trash, the trash
icon changes and it is a call to CopyBits that causes the icon to change.

 In spite of this, there are a number of pitfalls that you must avoid.

Delayed Patches (or Don’t Believe Everything You Read)
It is naive to believe that just because a patch occurs during the time that a
particular INIT is loading, it is the INIT that is doing the patching. This may not be
the case. It may not even have anything at all to do with the INIT!

 For example, when the INIT Suitcase executes, it patches a whole slew of traps.
In fact the Startup Report file will show that the following traps are all patched by
Suitcase. (Of course the actual addresses o the patches would vary from machine to
machine.)

 $A996 Patch: $3589E RsrcZoneInit
 $A9A1 Patch: $35952 GetNamedResource
 $A9A8 Patch: $359FA GetResInfo
 $A9A0 Patch: $35F10 GetResource
 $A9A2 Patch: $35DF6 LoadResource
 $A9B0 Patch: $35E3E WriteResource
 $A999 Patch: $36D66 UpDateResFile
 $A9AB Patch: $363DE AddResource
 $A9AD Patch: $36424 RmveResource
 $A99A Patch: $36DD0 CloseResFile
 $A99D Patch: $35BCC GetIndResource
 $A80E Patch: $35BDE Get1IndResource
 $A998 Patch: $35C2E UseResFile
 $A94D Patch: $3660E AddResMenu
 $A951 Patch: $36616 InsertResMenu

4If you haven’t already tried this neat INIT, get it off of just about any online service. It provides some nice
 special effects whenever you empty the trash.

13

 $A93D Patch: $36BDC MenuSelect
 $A9B6 Patch: $35CD0 OpenDeskAcc
 $A9B7 Patch: $35D90 CloseDeskAcc
 $A023 Patch: $35DE4 DisposHandle
 $A995 Patch: $357DC InitResources

14

 $A935 Patch: $3659C InsertMenu
 $A932 Patch: $36566 DisposMenu
 $A9A3 Patch: $36578 ReleaseResource
 $A997 Patch: $36232 OpenResFile
 $A000 Patch: $362D0 Open
 $A00C Patch: $36332 GetFileInfo

 Well, that’s all very well and good, and in fact all of these patches really are caused by Suitcase itself. However, no matter what
INIT loads next, you will see (essentially) the following in the next INIT's portion of the report:

$A99D Patch: GetIndResource $413CA4 (Patched by previous INIT)

 Now, INIT-Scope is telling you that it has detected that this patch is not really due to the current INIT, but is actually caused by
an earlier INIT. It is not terribly unusual for an INIT to patch a trap, which then in turn patches other traps when it is next
executed.

 This is one example of a delayed patch. In fact it does not matter what INIT executes after Suitcase; you will always see this
reference to a patch to GetIndResource. The reason for this is that the system code that is responsible for loading INITs at startup
time calls a trap that triggers the patch to GetIndResource. So although this patch occurs very close to the time that Suitcase
executes, it does not occur while Suitcase is executing.

 If you run INIT-Scope on a system that contains Strtscrn and Black Box and if Strtscrn executes after Black Box, then you will
see a patch to the toolbox trap PaintOne that appears to be due to Strtscrn, but is really caused by a delayed patch of Black Box’s.
(Black Box patches InitDialogs which (apparently) in turn patches PaintOne when it is called.) Since Strtscrn uses the toolbox
trap InitDialogs, it triggers the delayed patch by Black Box.

In fact, there will be some patches that will not be made until after the startup process has terminated. Naturally, INIT-Scope will
miss these. A later version of INIT-Scope will continue to monitor the system even after the Finder takes over, and these patches
and other extensions/alterations will not escape unnoticed.

Hooks
There is more than one way to patch the system. The Macintosh contains a variety
of low memory vectors that allow a user to install patch code that will be called at
a prescribed time. Perhaps the most frequently used such hook is JGNEFilter. Any
routine whose address is placed in this vector will be called at a special point
during the operation of the crucial GetNextEvent (or WaitNextEvent) trap that is
central to every Macintosh application. This is effectively a patch to the
GetNextEvent trap, but it does not appear as such. You can determine just which
low-memory globals INIT-Scope Checks by modifying the ‘HOOK’ resource
(described later).

A Word About Monitoring Low Memory Global Variables
The 'HOOK' resource mentioned above, contains the names and addresses of all
the low memory global variables that INIT-Scope can recognize.

 This resource purposely does not contain all the possible low-memory globals.
Only certain ones of these are likely to be of any significance to any INIT. For
example there are low-memory globals that monitor the location of the cursor, but
it is not likely the INIT will alter this location, and even if it did we would
probably not be able to determine that it was

15

in fact the INIT that did so and not just the user moving the mouse. Many
variables such as MenuHook, JGNEFilter, and others are sometimes altered by
INITs as another way of patching the system. All these variables are contained in
the default 'HOOK' resource.

---- INIT-Scope does not display the values of spurious global variables. ----

 Moreover, there are many low-memory values that get changed during the
INITialization process that are changed by the ROM, and not explicitly by the
INIT. It is unlikely that these values will be of any interest. For example, the
RMgrHiVars global holds the resource type during many calls to the Resource
Manager. Thus there is no point in checking to see if it changed before and after
the exectution of the INIT.

 However, in the event that you do want to monitor the changes to such variables,
you need only add their names and addresses to the 'HOOK' resource.

The GloB Resource—Following the Progress of a Particular Variable
Now, all of the variables in the HOOK resource are monitored only at the end of
each INIT's actions. If the variable's value changed, then INIT-Scope reports the
new value. For the variables contained in the HOOK resource, this is all that is
generally needed. Such variables will usually only be changed once, if at all, by
any INIT.

 However, you may want to monitor the changes to a variable more closely than
this. INIT-Scope lets you do this via its 'GloB' resource. This resource contains a
single long word. If the value in 'GloB' is $FFFFFFFF, then INIT-Scope will not
monitor any variable. Otherwise, it closely monitors the long value at the address
stored in 'GloB.' The (long) value stored at this address is monitored after every
trap call (from any source), and if it has changed since the last trap call, the change
is noted in the trap history portion of the Startup Report.

The Trap History
INIT-Scope intercepts the INIT process at its very roots, and hence can closely
monitor the proceedings. One consequence of this is that INIT-Scope can display,
as part of its report, a detailed account of the toolbox traps used during the
INITializing process. In fact, if you select the 'Show Trap History' option, then the
Startup Report will contain the name of every trap that the INIT calls during its
execution. For many traps the values of the parameters passed to the traps is
provided as well.

16

 If you select the 'INIT Calls Only' option, then only traps used by the INIT will be
reported.

 If you select the 'Show All Calls' option for trap history, then all trap calls will be
reported no matter whether they came from the INIT or not. Needless to say, this
will produce a L-O-N-G report and probably it is best not to select this option
unless you really need the information.

 An example of a portion of the trap history segment of an Startup Report is:

Trap History

 $A746 GetTrapAddress Unimplemented
 $A346 GetTrapAddress SysEnvirons
 $A81F Get1Resource sNot #0 ResHandle: $4C120
 $A9A3 ReleaseResource $4C120
 $A746 GetTrapAddress Unimplemented

17

 $A346 GetTrapAddress Gestalt
 $A746 GetTrapAddress Unimplemented
 $A346 GetTrapAddress NMInstall
 $A031 GetOSEvent
 $A260 HFSDispatch GetFCBInfo
 $A036 MoreMasters
 $A036 MoreMasters
 $A036 MoreMasters
 $A036 MoreMasters
 $A81F Get1Resource InaP #130 ResHandle: $1D8C8
 $A992 DetachResource $1D8C8
 $A064 MoveHHi $1D8C8
 $A029 HLock $1D8C8
 $A20C GetFileInfo
 $A974 Button
 $A1AD Gestalt $612F7578 a/ux
 $A81F Get1Resource sysz #0 ResHandle: $4C120
 $A9A3 ReleaseResource $4C120
 $A522 NewHandle Size (bytes): 30720
 $A522 NewHandle Size (bytes): 25600

:::::
:::::

 $A1AD Gestalt $612F7578 a/ux
 $A81F Get1Resource sysz #0 ResHandle: $4C120
 $A9A3 ReleaseResource $4C120
 $A522 NewHandle Size (bytes): 30720
 $A522 NewHandle Size (bytes): 25600
 $A99B SetResLoad

 Note that you can tell a great deal from the trap history report. Not only can you surmise the logic of the INIT at a
glance, but the values of the parameters allow you to locate important data inside the system heap or above BufPtr.
Also, the trap history report can be used like a street map to trace through the INIT with a debugger, or as an aid to
reconstructing the INIT's code with McNosy.

 The kinds of traps whose data is provided falls into these categories:

1. Memory manager calls that deal with handles. The value of the handle is provided.

2. BlockMove (INIT-Scope tells you how many bytes were moved, from where, and to where.)

3. Resource Traps - the ResType and ID of the requested resource are both provided, as well as the handle returned
by the resource call.

4. NewHandle and NewPtr. In each case the report shows the requested size of the handle or pointer.

5. For calls by HFSDispatch, the type of call is provided.

6. Pack Managers are displayed by name.

7. The parameters for other special traps such as Gestalt, GetTrapAddress, and SetTrapAddress.

18

 The trap word of each trap is also provided—and often this is valuable. For instance, both A11E and A51E are
legitimate trap words for the NewPtr trap. However, A11E will allocate the resulting block of RAM in the
application heap, while A51E will allocate the block in the system heap.

Some Caveats
There are a few problems with the Trap History portion of the report. If you select
to only see the calls made by the INIT, then INIT-Scope attempts to determine for
each trap call whether or not it was made by the INIT. It does this by simply
checking to see if the call lies in the range of memory beginning at the address of
the INIT and extending up to the address of BufPtr at the time the INIT was
loaded. Any call in this range will almost surely be from the INIT. A few anomalies
creep in however, and you should be aware of them.

 First, consider files such as Easy Access. This INIT File actually loads (at least
the system 6 version) three distinct INITs, and you will miss most of the calls by
easy Access unless you turn on the 'All Calls' option. The reason for this is as
follows. The first thing that each of the INITs loaded by Easy Access does is to
allocate a block of memory in the system heap, and then load some code resource
into it. Then the INIT jumps to a location in that new block—which is generally
lower in the system heap than the INIT itself. Consequently, INIT-Scope does not
recognize these calls as being from the INIT. Note that had the allocated memory
resided in high RAM, this problem would not occur.

Using INIT-Scope as a Debugging Aid
INIT-Scope makes it easy to intercept an INIT just after it is
loaded by the system and just before it actually executes. INIT-
Scope provides a lot of useful information that makes going
back through the INIT with a debugger a lot easier. You can plan
for breakpoints more intelligently and have better idea of what's
going on.

 To intercept an INIT during the startup process, simply hold
down the option key (but no other modifier keys) just before the
INIT is about to load (or, just after the previous INIT loads.)

 You must have a debugger installed in order to use this feature.

19

INIT-Scope does check for the presence of a debugger, and
ignores your request to intercept if no debugger is found.

 When you fall into the debugger, you will see a note that tells
you the name of the INIT that you are about to enter, and the
next instruction (the one pointed to by the PC) will be:

jsr (A1);

 The address of the INIT's code is in register A1, and you can
follow its execution by stepping through the code at this point.
The next step takes you to the first instruction in the INIT.

 Aside from the comments made earlier (in the section on trap
history), there are a few other things to be aware of if you want
to use a debugger with INIT-Scope.

 For one thing, if you generate a report, and then want to use
that report as a guide to ferreting through the INIT with a
debugger, then make sure that you keep INIT-Scope turned on!
Otherwise the addresses and data will not be the same the
second time through as they were in the report.

20

Beware the Debugger Patches
If you use INIT-Scope’s intercepting capability to drop into a debugger just before
an INIT is called, you must be prepared for two things; first, there will be no trap
history provided for this INIT (the trap history option is explained in the next
section), and secondly you will likely see some unusual patches that have nothing
to do with the INIT, but are in fact caused by the debugger. For example, in the
case of TMON, you may see something like:

 $2F Patch: $A3B2 PostEvent
 $1C9 Patch: $A3AC SysError
 Low Memory Vector at $8 altered to: $1EE0C4

 Note that TMON must patch vectors such as $8 to be able to intercept system
errors when they occur.

Modifying INIT-Scope

Changing the Report's Creator Type
The Startup Report is a text file, and consequently any word processor can read it.
However, it is convenient to be able to open the file directly from the Finder by
double-clicking it. For this reason, the report has been given the creator type of
'MSWD' so that you can open it directly if you own Microsoft Word. If you use
another word processor, then you might prefer to change the creator type to
something else—like MACA if you use MacWrite. You can do this by using
ResEdit to change INIT-Scope's ‘Fcrt’ resource (this resource is a long word
representing the creator type of the report, and is by default MSWD).

Changing the HOOK Resource
INIT-Scope contains a special resource of type 'HOOK'. There is a template for this
resource included in INIT-Scope’s resource file. It is a fairly simple matter to alter
this resource, and its structure is pretty self-explanatory. You can edit the 'HOOK'
resource and add or delete the names and addresses of low-memory globals that
you want to check.

Note: Do not distribute any version of INIT-Scope in which you have
changed this or any other resource.

21

Virtual Memory
This version of INIT-Scope will not provide an accurate report if
Virtual Memory is on. It will run under virtual memory ,but will
not provide the trap history and patch data portions of the report.
So if you want a complete report, reboot with virtual memory
temporarily turned off. Future versions of INIT-Scope will avoid
this problem.

22

Final Comments
INIT-Scope has been tested extensively on a Mac Plus, Mac SE,
Mac SE/30, Mac II, Mac IIcx, PowerBook 170, LCII, Macintosh
IIsi, and a Mac IIci. In addition, a great many INITs were tested
with INIT-Scope. The only debuggers that INIT-Scope has been
tested with are TMON and MacsBug. Also INIT-Scope has not
been tested with Systems below 6.0.

 INIT-Scope's INIT is written entirely in assembler. Although it
provides you with a great deal of information about the patches
to the toolbox traps, INIT-Scope does not patch any traps itself.

Future Versions
Your comments, suggestions are welcome and indeed solicited. INIT-Scope will be
continually improved, and your suggestions for further enhancements or (gasp!)
bug reports will help.

 This version 2.0 of INIT-Scope is ShareWare, and is not public domain. I retain
the copyright. INIT-Scope may be distributed anywhere you like, but this
documentation must be included with it.

 Also, please make sure that any distributed copy has the name of the file as
“ INIT-Scope” (with a leading space), and I'd prefer that the ‘Fcrt’ resource remain
‘MSWD’ (so that the report will be a Microsoft Word file). Similarly, do not
distribute any copy of INIT-Scope in which the ‘HOOK’ resource or ‘GloB’
resource has been altered. (The ‘GloB’ Resource should be $FFFFFFFF in any
distributed version of INIT-Scope.)

If you decide to keep INIT-Scope, send $15 to David Sumner at one of the
addresses below. Technical help and upgrade notices will be provided to those who

23

register.

David P. Sumner Dept of Mathematics
1009 Walters Lane University of South Carolina
Columbia, SC 29208 Columbia, SC 29208
(803)-783-2980 (803)-777-3976

I can also be reached electronically at any of these addresses:

Compuserve: 75515,1507
America Online: David Sumn
Internet: sumner@milo.math.scarolina.edu

24

Addendum
Changes to INIT-Scope 1.0

 1. INIT-Scope 2.0 is system 7.0 compatible.
 2. All new traps up to 1992 are recognized.
 3. Information is provided for more special traps (such as
gestalt).
 4. Additional information is provided about the initial startup
status of the machine.
 5. INIT Intercepting is better behaved and much more
convenient to use.
 6. All low-memory hooks are monitored regularly.
 7. The user can modify the low-memory globals that are
checked by INIT-Scope.
 8. The format of the output file has been improved.
 9. Notification requests and associated strings are included in
the report.
10. Handles returned to resource traps are displayed in trap
history.
11.The user may optionally observe the changes to a particular
global variable after
 every trap call.
12. The handle to each INIT is supplied.
13. A rudimentary measure of system heap fragmentation is
provided with the report on
 each INIT.

25

